ТЕХНОЛОГИИ ТЕПЛОИЗОЛЯЦИОННЫХ МАТЕРИАЛОВ

Определение теплопроводности

Определение теплопроводности

1,0 І, г 1,ч Is 1,8 гр ц гр гр Ір зр

Скорость ультразвука, кп

Рис. 21. Тарировочный график «скорость ультразвука — прочность газобетона»:

- кубиковая прочность при сжатии, // — прочность при изгибе

/

Способность материалов и веществ проводить тепло называется теплопроводностью (X,) и выражается коли­чеством тепла, проходящим через стенку площадью 1 м2, Толщиной 1 м за 1 ч при разности температур на противо­положных поверхностях стенки в 1 град. Единица изме­рения теплопроводности — Вт/(м-К) или Вт/(м-°С).

Теплопроводность материалов определяют

Х=-

Где Q — количество тепла (энергии), Вт; F — площадь сечения материала (образца), перпендикулярная направ­лению теплового потока, м2; At— разность температур на противоположных поверхностях образца, К или °С; б— толщина образца, м.

Теплопроводность — один из главных показателей свойств теплоизоляционных материалов. Этот показатель зависит от целого ряда факторов: общей пористости ма­териала, размера и формы пор, вида твердой фазы, вида газа, заполняющего поры, температуры и т. п.

(1-/>с)-

Зависимость теплопроводности от этих факторов в наиболее универсальном виде выражают уравнением Лееба:

_______ Ђs______ - і

Где Кр-—теплопроводность материала; Xs — теплопровод­ность твердой фазы материала; Рс — количество пор, на­ходящихся в сечении, перпендикулярном потоку тепла; Pi—количество пор, находящихся в сечении, параллель­ном потоку тепла; б — радиальная постоянная; є — излу­чаемость; v — геометрический фактор, влияющий на. из­лучение внутри пор; Tt — средняя абсолютная температу­ра; d — средний диаметр пор.

Знание теплопроводности того или иного теплоизоля­ционного материала позволяет правильно оценить его теплоизоляционные качества и рассчитать толщину теп­лоизоляционной конструкции из этого материала по за­данным условиям.

В настоящее время существует ряд методов определе­ния теплопроводности материалов, основанных на изме­рении стационарного и нестационарного потоков тепла.

Первая группа методов позволяет проводить измере­ния в широком диапазоне температур (от 20 до 700° С) и получать более точные результаты. Недостатком мето­дов измерения стационарного потока тепла является большая продолжительность опыта, измеряемая часами.

Вторая группа методов позволяет проводить экспери­мент в течение нескольких минут (до 1 ч), но зато при­годна для определения теплопроводности материалов лишь при сравнительно низких температурах.

Определение теплопроводности, основанное на изме­рении стационарного потока тепла. Метод одной пластины.

Измерение теплопроводности строительных материа­лов этим методом производят, пользуясь прибором, изо­браженным на рис. 22. При этом с помощью малоинер­ционного тепломера производят измерение стационарного теплового потока, проходящего через испытуемый обра­зец материала.

Определение теплопроводности

Рис. 22. Однопластинчатый прибор для опреде­ления теплопроводности материалов

Прибор состоит из плоского электронагревателя 7 и малоинерционного тепломера 9, установленного на рас­стоянии 2 мм от поверхности холодильника 10, через ко­торый непрерывно протекает вода с постоянной темпера­турой. На поверхностях нагревателя и тепломера зало­жены термопары 1,2,4 и 5. Прибор помещен в металли­ческий кожух 6, заполненный теплоизоляционным мате­риалом. Плотное прилегание образца 8 к тепломеру и на­гревателю обеспечивается прижимным приспособлением 3. Нагреватель, тепломер и холодильник имеют форму диска диаметром 250 мм.

Тепловой поток от нагревателя через образец и мало­инерционный тепломер передается холодильнику. Вели­чина теплового потока, проходящего через центральную часть образца, измеряется тепломером, представляющим собой термобатарею на паранитовом диске, или тепло - мером с воспроизводящим элементом, в который вмонти­рован плоский электрический нагреватель.

Прибором можно измерять теплопроводность при тем­пературе на горячей поверхности образца от 25 до 700° С.

В комплект прибора входят: терморегулятор типа РО-1, потенциометр типа КП-59, лабораторный авто­трансформатор типа РНО-250-2, переключатель термо­пар МГП, термостат ТС-16, амперметр технический пе­ременного тока до 5 А и термос.

Образцы материала, подвергающиеся испытанию, должны иметь в плане форму круга диаметром 250 мм. Толщина образцов должна быть не более 50 и не менее 10 мм. Толщину образцов измеряют с точностью до 0,1 мм и определяют как среднее арифметическое из ре­зультатов четырех измерений. Поверхности образцов должны быть плоскими и параллельными.

При испытании волокнистых, сыпучих, мягких и полу­жестких теплоизоляционных материалов отобранные об­разцы помещают в обоймы диаметром 250 мм и высотой 30—40 мм, изготовленные из асбестового картона толщи­ной 3—4 мм.

Плотность отобранной пробы, находящейся под удель­ной нагрузкой, должны быть равномерна по всему объему и соответствовать средней плотности испытуемого мате­риала.

Образцы перед испытанием должны быть высушены до постоянной массы при температуре 105—110° С.

Подготовленный к испытаниям образец укладывают на тепломер и прижимают нагревателем. Затем устанав­ливают терморегулятор нагревателя прибора на задан­ную температуру и включают нагреватель в сеть. После установления стационарного режима, при котором в тече­ние 30 мин показания тепломера будут постоянными, от­мечают показания термопар по шкале потенциометра.

При применении малоинерционного тепломера с вос­производящим элементом переводят показания тепломе­ра на нуль-гальванометр и включают ток через реостат, и миллиамперметр на компенсацию, добиваясь при этом положения стрелки нуль-гальванометра на 0, после чего регистрируют показания по шкале прибора в мА.

При измерении количества тепла малоинерционным тепломером с воспроизводящим элементом расчет тепло­проводности материала производят по формуле

■k=QV(t1-t2),

Где б — толщина образца, м; T — температура горячей поверхности образца, °С; — температура холодной по­верхности образца, °С; Q — количество тепла, проходя­щее через образец в направлении, перпендикулярном его поверхности, Вт/м2.

При, этом

Q = RI2/F,

Где R — постоянное сопротивление нагревателя тепломе­ра, Ом; / — сила тока, A; F — площадь тепломера, м2.

При измерении количества тепла (Q) градуированным малоинерционным тепломером расчет производят по фор­муле Q=AE (Вт/м2), где Е — электродвижущая сила (ЭДС), мВ; А — постоянная прибора, указанная в гра- дуировочном свидетельстве на тепломер.

Температуру поверхностей образца измеряют с точ­ностью до 0,1 С (при условии стационарного состояния). Тепловой поток вычисляют с точностью до 1 Вт/м2, а теп­лопроводность— до 0,001 Вт/(м-°С).

При работе на данном приборе необходимо произво­дить его периодическую проверку путем испытания стан­дартных образцов, которые предоставляют научно-ис­следовательские институты метрологии и лаборатории Комитета стандартов, мер и измерительных приборов при Совете Министров СССР.

После проведения опыта и получения данных состав­ляют свидетельство об испытании материала, в котором должны содержаться следующие данные: наименование и адрес лаборатории, проводившей испытания; дата про­ведения испытания; наименование и характеристика ма­териала; средняя плотность материала в сухом состоя­нии; средняя температура образца во время испытания; теплопроводность материала при этой температуре.

Метод двух пластин позволяет получать более достоверные результаты, чем рассмотренные выше, так как испытанию подвергают сразу два образца-близнеца и, кроме того, тепловой поток, проходящий через образ­цы, имеет два направления: через один образец он идет снизу вверх, а через другой — сверху вниз. Это обстоя­тельство в значительной степени способствует усредне­нию результатов испытания и приближает условия опы­та к реальным условиям службы материала.

Принципиальная схема двухпластинчатого прибора для определения теплопроводности материалов методом стационарного режима показана на рис. 23.

Прибор состоит из центрального нагревателя 1, охран­ного нагревателя 2, охладительных дисков 6, которые од-

~ п7-ггов

Определение теплопроводности

Рис. 23. Схема двухпластинчатого прибора для определения теплопроводности материалов

Новременно прижимают образцы материала 4 к нагре­вателям, изоляционной засыпки 3, термопар 5 и кожуха 7.

Г

В комплект прибора входит следующая регулиру­ющая и измерительная аппаратура. Стабилизатор на­пряжения (СН), автотрансформаторы (Т), ваттметр (W), Амперметры (А), регулятор температуры охранного на­гревателя (Р), переключатель термопар (Я), гальвано­метр или потенциометр для измерения температуры (Г) И сосуд со льдом (С).

Для обеспечения одинаковых граничных условий у пе­риметра испытуемых образцов форма нагревателя при­нята дисковой. Диаметр основного (рабочего) нагревате­ля для удобства расчета принят равным 112,5 мм, что соответствует площади в 0,01 м2.

Испытание материала на теплопроводность произво­дят следующим образом.

Из отобранного для испытания материала изготовля­ют два образца-близнеца в виде дисков диаметром, рав­ным диаметру охранного кольца (250 мм). Толщина об­разцов должны быть одинаковой и находиться в пределах от 10 до 50 мм. Поверхности образцов должны быть плоскими и параллельными, без царапин и вмятин.

Испытание волокнистых и сыпучих материалов про­изводят в специальных обоймах из асбестового картона.

Перед испытанием образцы высушивают до постоян­ной массы и измеряют их толщину с точностью до 0,1 мм.

Образцы укладывают с двух сторон электронагрева­теля и прижимают их к нему охладительными дисками. Затем устанавливают регулятор напряжения (латр) в по­ложение, при котором обеспечивается заданная темпера­тура электронагревателя. Включают циркуляцию воды в охладительных дисках и после достижения установив­шегося режима, наблюдаемого по гальванометру, изме­ряют температуру у горячих и холодных поверхностей образцов, для чего пользуются соответствующими термо­парами и гальванометром или потенциометром. Одновре­менно измеряют расход электроэнергии. После этого вы­ключают электронагреватель, а через 2—3 ч прекращают подачу воды в охладительные диски.

Теплопроводность материала, Вт/(м-°С),

X — - MZJL

Где W — расход электроэнергии, Вт; б — толщина образ­ца, м; F — площадь одной поверхности электронагрева­теля, м2;. t — температура у горячей поверхности образ­ца, °С; І2 — температура у холодной поверхности образ­ца, °С.

Окончательные результаты по определению теплопро­водности относят к средней температуре образцов
где t — температура у горячей поверхности образца (средняя двух образцов), °С; t2 температура у холод­ной поверхности образцов (средняя двух образцов), °С.

Метод трубы. Для определения теплопроводности теплоизоляционных изделий с криволинейной поверх­ностью (скорлуп, цилиндров, сегментов) применяют ус­тановку, принципиальная схема которой показана на

Определение теплопроводности

Определение теплопроводности

Рис. 24. Схема прибора для определения тепло­проводности материалов методом трубы

Рис. 24. Эта установка представляет собой стальную тру­бу диаметром 100—150 мм и длиной не менее 2,5 м. Внут­ри трубы на огнеупорном материале смонтирован нагре­вательный элемент, который разделен на три самостоя­тельные секции по длине трубы: центральную (рабочую), занимающую примерно ]/з длины трубы, и боковые, слу­жащие для устранения утечки тепла через торцы прибора (трубы).

Трубу устанавливают на подвесках или на подставках на расстоянии 1,5—2 м от пола, стен и потолка помеще­ния.

F

Температуру трубы и поверхности испытуемого ма­териала измеряют термопарами. При проведении испыта­ния необходимо регулировать мощность электроэнергии, потребляемую охранными секциями, для исключения пе­репада температуры между рабочей и охранными секция­
ми. Испытания проводят при установившемся тепловом режиме, при котором температура на поверхностях тру­бы и изоляционного материала постоянна в течение 30 мин.

Расход электроэнергии рабочим нагревателем можно измерять как ваттметром, так и отдельно вольтметром и амперметром.

Теплопроводность материала, Вт/(м ■ °С),

Я/2ІП—

X —_____ D

2 пЦЬ — Ь)*

Где D — наружный диаметр испытуемого изделия, м; d Внутренний диаметр испытуемого материала, м; — тем­пература на поверхности трубы, °С; t2 — температура на внешней поверхности испытуемого изделия, °С; I — длина рабочей секции нагревателя, м.

Кроме теплопроводности на данном приборе можно замерять величину теплового потока в теплоизоляцион­ной конструкции, изготовленной из того или иного тепло­изоляционного материала. Тепловой поток (Вт/м2)

Определение теплопроводности, основанное на мето­дах нестационарного потока тепла (методы динамиче­ских измерений). Методы, основанные на измерении не­стационарных потоков тепла (методы динамических из­мерений), в последнее время все шире применяются ДЛЯ определения теплофизических величин. Преимуществом этих методов является не только сравнительная быстрота проведения опытов, но и больший объем информации, по­лучаемой за один опыт. Здесь к другим параметрам кон­тролируемого процесса добавляется еще один — время. Благодаря этому только динамические методы позволя­ют получать по результатам одного опыта теплофизиче - ские характеристики материалов такие, как теплопровод­ность, теплоемкость, температуропроводность, темп ох­лаждения (нагревания)

В настоящее время существует большое количество методов и приборов для измерения динамических темпе­ратур и тепловых потоков. Однако все они требуют зна­
Ния конкретных условий и введения поправок к получен­ным результатам, так как процессы измерения тепловых величин отличаются от измерения величин другой при­роды (механических, оптических, электрических, акусти­ческих и др.) своей значи­тельной инерционностью.

Поэтому методы, ос­нованные на измерении стационарных потоков тепла, отличаются от рас­сматриваемых методов значительно большей идентичностью между ре­зультатами измерений и истинными значениями измеряемых тепловых ве­личин.

Совершенств о в а н и е динамических методов измерений идет по трем направлениям. Во-пер­вых, это развитие мето­дов анализа погрешно­стей и введения поправок в результаты измерений. Во-вторых, разработка автоматических коррек­тирующих устройств для компенсации динамиче­ских погрешностей.

Рассмотрим два наи­более распространенных в СССР метода, основан­ных на измерении неста­ционарного потока тепла.

Определение теплопроводности

Рис. 25. Плоский малогабарит­ный бикалориметр МПБ-64-1:

1 — рукоятка; 2 — испытуемые об­разцы; 3 — разъемный корпус; 4 — Сердечник с нагревателем и батаре­ей дифференциальных термопар; 5 — крепежный винт

1. Метод регу­лярного теплового режима с бикало - риметром. При при­менении этого метода мо­гут быть использованы различные типы конструкции бикалориметров. рассмот­рим один из них — малогабаритный плоский бикалори - метр типа МПБ-64-1 (рис. 25), который предназначен
для определения теплопроводности полужестких, волок­нистых и сыпучих теплоизоляционных материалов при комнатной температуре.

Прибор МПБ-64-1 представляет собой цилиндрической формы разъемную оболочку (корпус) с внутренним диа­метром 105 мм, в центре которой встроен сердечник с вмонтированным в него нагревателем и батареей диффе­ренциальных термопар. Прибор изготовлен из дюралюми­ния марки Д16Т.

Термобатарея дифференциальных термопар бикало - риметра оснащена медно-копелевыми термопарами, диа­метр электродов которых равен 0,2 мм. Концы витков тер­мобатарей выведены на латунные лепестки кольца из стеклоткани, пропитанной клеем БФ-2, и далее через про­вода к вилке. Нагревательный элемент, выполненный из Нихромовой проволоки диаметром 0,1 мм, нашит на про­питанную клеем БФ-2 круглую пластинку из стекло ткани. Концы проволоки нагревательного элемента, так же как и концы проволоки термобатареи, выведены на латунные лепестки кольца и далее, через вилку, к источнику пита­ния. Нагревательный элемент может питаться от сети пе­ременного тока напряжением 127 В.

Прибор герметичен благодаря уплотнению из вакуум­ной резины, заложенной между корпусом и крышками, а также сальниковой набивке (пеньково-суриковой) между ручкой, бобышкой и корпусом.

Термопары, нагреватель и их выводы должны быть хорошо изолированы от корпуса.

Размеры испытуемых образцов не должны превышать в диаметре 104 мм и по толщине—16 мм. На приборе одновременно производят испытание двух образцов-близ­нецов.

Работа прибора основана на следующем принципе.

Процесс охлаждения твердого тела, нагретого до тем­пературы T° и помещенного в среду с температурой ©<Ґ при весьма большой теплопередаче (а) от тела к Среде («->-00) и при постоянной температуре этой среды (0 = const), делится на три стадии.

1. Распределение температуры в теле носит сначала случайный характер, т. е. имеет место неупорядоченный тепловой режим.

Г

2. С течением времени охлаждение становится упоря­доченным, т. е. наступает регулярный режим, при кото­
ром изменение температуры в каждой точке тела подчи­няется экспоненциальному закону:

Q AUe.-"1

Где © — повышенная температура в какой-нибудь точке тела; U — некоторая функция координат точки; е—осно­вание натуральных логарифмов; т — время от начала охлаждения тела; т — темп охлаждения; А — постоянная прибора, зависящая от начальных условий.

3. После регулярного режима охлаждение характери­зуется наступлением теплового равновесия тела с окру­жающей средой.

Темп охлаждения т после дифференцирования выра­жения

Q~AUe-m т

По т в координатах In ВТ выражается следующим об­разом:

Т=( In — In &2)f(x2—x О -

Расчет величины теплопроводности производят по формуле

=(А + ВС)т,

Где А и В — константы прибора; С — полная теплоем­кость испытуемого материала, равная произведению удельной теплоемкости материала на его массу, Дж/(кг-°С);т — темп охлаждения, 1/ч.

Испытание проводят следующим образом. После по­мещения образцов в прибор крышки прибора плотно при­жимают к корпусу с помощью гайки с накаткой. Прибор опускают в термостат с мешалкой, например в термо­стат ТС-16, заполненный водой комнатной температуры, затем подсоединяют термобатарею дифференциальных термопар к гальванометру. Прибор выдерживают в тер­мостате до выравнивания температур наружной и внут­ренней поверхностей образцов испытуемого материала, что фиксируется показанием гальванометра. После это­го включают нагреватель сердечника. Сердечник нагре­вают до температуры, превышающей на 30—40° темпера­туру воды в термостате, а затем выключают нагреватель. Когда стрелка гальванометра возвратится в пределы шкалы, производят запись убывающих во времени пока­заний гальванометра. Всего записывают 8—10 точек.

В системе координат 1п0—т строят график, который должен иметь вид прямой линии, пересекающей в некото­рых точках оси абсцисс и ординат. Затем рассчитывают тангенс угла наклона полученной прямой, который выра­жает величину темпа охлаждения материала:

__ In 6t In O2__ 6 02

ТІЬ — — j

T2 — Tj 12 — "El

Где Bi и 02 — соответствующие ординаты для времени Ті и Т2.

Опыт повторяют вновь и еще раз определяют темп охлаждения. Если расхождение в значениях темпа охлаж­дения, вычисленного при первом и втором опытах, менее 5%, то ограничиваются этими двумя опытами. Среднее значение темпа охлаждения определяют по результатам двух опытов и вычисляют величину теплопроводности ма­териала, Вт/(м*°С)

Х = (А + ЯСуР)/и.

Пример. Испытуемый материал — минераловатный мат на фенольном связующем со средней плотностью в сухом состоянии 80 кг/м3.

1. Вычисляем величину навески материала, помеща­емую в прибор,

Где Рп— навеска материала, помещаемая в одну цилин­дрическую емкость прибора, кг; Vn — объем одной ци­линдрической емкости прибора, равный 140 см3; рср — средняя плотность материала, г/см3.

0,08-140= 11,2 г=0,0112 кг; Р=2РП = 0,0224 кг.

2. Определяем произведение BCYP, где В — константа прибора, равная 0,324; С — удельная теплоемкость ма­териала, равная 0,8237 кДж/(кг-К). Тогда ВСУР= =0,324 • 0,8237 • 0,0224 = 0,00598.

3. Результаты наблюдений за охлаждением образцов в приборе во времени заносим в табл. 2.

Wr


Таблица 2


Опыт 1

Опыт 2

Деления шкалы

Деления шкалы

Т,

Т,

Доли часа

І,

Мни

І

Доли часа

Мин

0 0,00 140,0

3 0,05 . 125,0

6 0,10 113,0

9 0,15 103,0+

12 0,20 92,0

15 0,25 82,5

18 0,30 74,5

140,0 127,0 114,5 104,0+ 93,0 83,5 76,0 69,0+

0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35

0 3 6 9 12 15 18 21

21 0,35 67,6+

Выбираем в таблице по две точки из данных каждого опыта, отмеченные значком +, и вычисляем темп охлаж­дения (mi и т2) для каждого опыта:

Определение теплопроводности

ТЩ

Расхождения в значениях темпа охлаждения т и т2 менее 5%, поэтому повторные опыты можно не произво­дить.

4. Вычисляем средний темп охлаждения

Т=(2,41 + 2,104)/2=2,072.

Зная все необходимые величины, подсчитываем тепло­проводность

(0,0169+0,00598) 2,072=0,047 Вт/(м-К)

Или Вт/(м-°С).

При этом средняя температура образцов составляла 303 К или 30° С. В формуле 0,0169 —Л (константа при­бора) .

2. Зондовый метод. Существует несколько раз­новидностей зондового метода определения теплопровод­
ности теплоизоляционных материалов, отличающихся друг от друга применяющимися приборами и принципами нагрева зонда. Рассмотрим один из этих методов — метод цилиндрического зонда без электронагревателя.

Этот метод заключается в следующем. Металлический стержень диаметром 5—6 мм (рис. 26) и длиной около 100 мм вводят в толщу горячего теплоизоляционного ма­териала и с помощью вмонтированной внутри стержня

Определение теплопроводности

Рис. 26. Схема цилиндрического зонда без электронагревателя:

1—контакты для термопары; 2— изолятор; 3— фарфоровый вкладыш; 4 — термопара; 5 — метал­лический стержень

Термопары определяют температуру. Определение темпе­ратуры производят в два приема: в начале опыта (в мо­мент нагревания зонда) и в конце, когда наступает рав­новесное состояние и повышение температуры зонда пре­кращается. Время между этими двумя отсчетами заме­ряют с помощью секундомера. ч Теплопроводность материала, Вт/ (м • °С), , R2CV

Где R — радиус стержня, м; С — удельная теплоемкость материала, из которого изготовлен стержень, кДж/(кгХ ХК); V—объем стержня, м3; т — промежуток времени между отсчетами температуры, ч; tx и U — значения тем­ператур в момент первого и второго отсчетов, К или °С.

Этот способ очень прост и позволяет быстро опреде­лить теплопроводность материала как в лабораторных, так и в производственных условиях. Однако он пригоден лишь для грубой оценки этого показателя.

ТЕХНОЛОГИИ ТЕПЛОИЗОЛЯЦИОННЫХ МАТЕРИАЛОВ

Звукоизоляционный материал ТЗИ для защиты от шума, ветра, холода

В многоквартирных домах с тонкими стенами насладиться тишиной удается редко. Любители громкой музыки, шумных застолий и выяснения отношений не дают покоя соседям. Уменьшить уровень шума все-таки можно. Для этого нужно …

Термопанели — качественный материал для отделки и утепления дома

Современные термопанели выделяются отменными эксплуатационными качествами, что делает их идеальным материалом для отделки зданий. Вопрос с утеплением дома всегда стоял остро. Производители предлагают множество строительных материалов, но большинство людей предпочитают …

Негорючая изоляция и базальтовая вата

При возведении зданий любого предназначения необходимо уделять внимание пожарной безопасности. Для решения этой проблемы подойдет негорючая изоляция, базальтовая вата.
Негорючие теплоизоляционные материалы стали неотъемлемой частью профильного рынка.

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.