Сушка и хранение семян подсолнечника

Сушка и хранение семян подсолнечника

Л. Д. Комышник, А. П. Журавлев, Ф. М. Хасанова

Важным физико-механическим свойством семян подсолнеч­ника как объекта сушки является сыпучесть, характеризующаяся углом естественного откоса. Определяющее значение на сыпу­честь семян подсолнечника оказывают влажность семян, содер­жание посторонних примесей и их характер, а также поверхность, по которой перемещаются семена. Угол естественного откоса сухих семян подсолнечника колеблется от 27 до 35°, влажных — до 42°, а высоковлажных и засоренных (засоренность до 8%) достигает 55°, что значительно выше, чем у злаковых культур. Эти особенности семян подсолнечника вызывают определенные трудности при их поточной обработке. Легковесные семена, имея повышенный коэффициент внутреннего трения, на некоторых уча­стках технологической схемы передвигаются медленнее, чем зерно колосовых культур или кукурузы. Поэтому при работе с семена­ми подсолнечника трубы зерносушилок должны иметь больший диаметр и их устанавливают под большим углом наклона.

Трудности обработки семян подсолнечника связаны с физи­ческими особенностями и отличием их от злаковых культур. Так, насыпная плотность семян подсолнечника, поступающего на хле­боприемные предприятия, в зависимости от влажности и засо­ренности колеблется в пределах 326. . 440 кг/м3, т. е. вдвое мень­ше, чем у пшеницы, поэтому и в 2 раза меньше масса семян, поступающих в сушилку.

Наличие воздушной прослойки между ядром и плодовой обо­лочкой семян, а также значительное содержание жира явля­ется причиной более низкой скорости витания семян подсолнечни­ка, чем для зерна. Скорость их витания изменяется от 4 до 8,0 м/с, в то время как для риса 8,9. .9,5 м/с, пшеницы 9,0. .11,5, кукурузы 12,5. ,14,0 м/с. Поэтому во избежание выноса полно­ценных семян из коробов шахты и камеры нагрева сушилки скорость агента сушки должна быть ниже, чем при сушке зер­новых культур.

Удлиненная форма семянок - подсолнечника и сравнительно шероховатая поверхность обусловливают большую скважистость. Так, скважистость подсолнечника колеблется в пределах 60.

80%, а риса 50. .65, пшеницы 35. .45 и кукурузы 35. .55%. Следовательно, семена подсолнечника, имея большую скважис­тость, оказывают меньшее сопротивление при прохождении аген­та сушки в сушилках и сушатся быстрее, чем сесена других культур.

Гигроскопичность — одно из важнейших свойств зерна, опре­деляющих режимы его хранения и сушки. Для семян подсол­нечника как капиллярно-пористых коллоидных тел характерны все формы связи, которые, по классификации академика Л. А. Ре - биндера, подразделяются на химическую, физико-химическую и механическую. В процессе сушки семян их основные физичес­кие и химические свойства должны сохраниться, следовательно, химически связанную влагу не надо удалять.

Влажность семян подсолнечника, при которой остается хи­мически и адсорбционно связанная влага, часто называют кри­тической. Эта влага не участвует в жизненных процессах, не может быть использована большинсвом микроорганизмов для поддержания своей жизнедеятельности и поэтому не влияет на стойкость семян подсолнечника в процессе хранения. Следо­вательно, сушить семена необходимо до такой влажености, чтобы в них оставалась преимущественно адсобционно связанная вода.

Критическую влажность семян определяют по формуле:

Юг (100 — М)

= —"ТОО-----

Где Wr — влажность гидрофильной части,%; М — фактическая масличность, %.

Например, при критической влажности гидрофильной части 14 %, масличности 50 % критическая влажность семян подсол­нечника будет:

14 (100 - 50) Шкр= Ї00 :7%-

Критическая влажность семян высоковлажного подсолнеч­ника 6 8 %.

Равновесная влажность семян подсолнечника, т. е. влажность, при которой семена не отдают и не поглощают влагу, зависит от температуры, относительной влажности атмосферного возду­ха, масличности. Равновесная влажность семян изменяется в зависимости от относительной влажности воздуха ф по зако­номерности

Wp = 0,623 ф>14

Такая зависимость справедлива при ф = 45...85%, и она не учитывает химического состава высокомасличных сортов семян подсолнечника.

М. И. Игольченко и В. М. Копейковский установили зависи­мость между равновесной влажностью семян подсолнечника с содержанием жира до 50% при температуре атмосферного воз­духа от 14 до 30°С и относительной влажности от 9 до 82%. Она выражается соотношением

Wp= 2,133 е0,017549- ф \

Где е — основание натурального логарифма.

При всех равных условиях равновесная влажность маслич­ных культур в 2 раза меньше, чём зерновых. Это объясняет­ся меньшим содержанием в семенах масличных культур гид­рофильных коллоидов и наличием большого количества жира. С увеличением содержания масличности в семенах равновес­ная влажность подсолнечника уменьшается, так как с повыше­нием масличности уменьшатся содержание гидрофильных ве­ществ и соответственно увеличивается содержание гидрофобных.

Значительное содержание оболочки в подсолнечнике и ее высокая гигроскопичность являются предпосылками для разра­ботки рациональных осциллирующих режимов — чередования сушки, охлаждения и отволаживания. Например, применение чередования интенсивной продувки и отволаживания, во время которого влага концентрируется в оболочке, приводит к интен­сификации влагоотдачи при сушке, так как влагопроводность оболочки выше, чем ядра, и зона испарения находится у по­верхности.

Равновесная влажность составных частей семян неодинако­ва: она больше у оболочки (лузги) и меньше у ядра. Равновес­ная влажность семян занимает промежуточное положение. Со­держащиеся в массе семян подсолнечника органические и сор­ные примеси обладают большой гигроскопичностью. При одной и той же относительной влажности и температуре воздуха рав­новесная влажность органических сорных примесей больше рав­новесной влажности семян в 1,8 раза.

Основными теплофизическими характеристиками, определя­ющими теплообменные свойства масличных семян, являются теп­лоемкость, коэффициенты теплопроводности и температуро­проводности. Теплофизические характеристики, определяющие скорость протекания процессов нагрева и охлаждения, различны для отдельных семянок и семенной массы, но в обоих случаях зависят прежде всего от размеров семянок, их влажности, хими­ческого состава, масличности, лузжистости и температуры. На теплофизические показатели семенной массы большое влияние оказывают количество и состав содержащихся в ней примесей.

При увеличении влажности семян подсолнечника до 17,8% теплоемкость возрастает по линейному закону. Повышение влаж­ности да 11 % приводит к увеличению коэффициента теплопроводности, дальнейшее повышение влажности не влияет на изме­нение величины этого коэффициента. Коэффициент температуро­проводности семян при увеличении влажности до 11% возрас­тает, а при дальнейшем увеличении снижается.

Значение теплофизических характеристик семенной массы го­раздо ниже, чем отдельных семянок, вследствие значительного содержания в ней воздуха.

Технология сушки семян подсолнечника

Для семян подсолнечника различают четыре состояния по влажности: сухое до 7,0%, средней сухости свыше 7,0 до 8,0%, влажное свыше 8,0 до 9,0%, сырое свыше 9,0%. В семенах сухих и средней сухости почти нет свободной влаги, и хранить их можно длительное время.

Семена подсолнечника при поступлении на хлебоприемные предприятия и маслозаводы по качеству должны отвечать требо­ваниям базисных или ограничительных кондиций (табл. 1.).

Зона

1. Базисные и ограничительные кондиции семян подсолнечника

Базисная влажность,% Ограничительная влажность,%

TOC \o "1-3" \h \z Южная 12 15

Центральная 13 17

Восточная 14 19

* Сорная примесь 1%, маслиничная 3%.

** То же, 10 и 7%.

Специфические свойства семян подсолнечника как объекта сушки, неоднородность семянки (наличие ядра, плодовой и се­менной оболочек), естественная неоднородность семян по раз­мерам, массе и влажности, низкая прочность плодовой оболочки, влагоинерционность, низкая теплопроводность, термолабильность белковой и липидной частей системы, повышенная пожарная опасность предъявляют особые требования к способу сушки и к конструкции сушильных устройств. При сушке не должно ухудшаться качество и уменьшаться выход масла, не должно происходить растрескивания лузги и увеличения масличной при­меси. Не допускается увеличение в процессе сушки кислотного и йодного чисел жира, изменение вкусовых и пишевых достоинств подсолнечного масла.

Одним из наиболее рациональных методов улучшения техно­логических своцств, сохранения качества и повышения стойко­сти семян подсолнечника в процессе хранения является тепло­вая сушка. 6

При сушке семян подсолнечника большое значение имеет не только температура нагрева семян, но и продолжительность ее воздействия. Значения коэффициентов теплопроводности, температуропроводности для единичной семянки значительно от­личаются от тех же показателей для плотного слоя. Для быст­рого нагрева семян необходима такая конструкция сушильного аппарата, в котором бы обеспечивался нагрев каждой единич­ной семянки в отдельности. В этом случае можно значительно поднять температуру агента сушки при снижении продолжитель­ности нагрева до нескольких секунд. Кратковременное высу­шивание семян подсолнечника при более высокой температуре предпочтительнее, чем медленное высушивание при низкой.

Чтобы превратить 1 кг воды в пар, необходимо затратить около 2680 кДж тепла. При сушке фактически затрачивается на испарение 1 кг воды 5020. .6280 кДж в шахтных сушилках и 3670. .4490 кДж в рециркуляционных. При сушке семян подсол­нечника необходим обоснованный выбор температурных режи­мов. Сушка должна протекать с минимальными затратами тепла и электроэнергии, с максимальной скоростью удаления влаги при наилучших технологических свойствах высушенного мате­риала.

Сушка представляет собой комплекс одновременно проте­кающих и влияющих друг на друга явлений. Это — перенос теп­ла от агента сушки к высушиваемому материалу через его повер­хность, испарение влаги, перемещение влаги внутри материала, перенос влаги с поверхности материала в сушильную зону.

На испарение влаги влияют в основном два процесса: влаго - проводность и термовлагопроводность, которые характеризуют внутренний тепло - и влагоперенос во влажном материале. При испарении влаги поверхностные слои подсушиваются. Создается градиент влагосодержания, т. е. внутри материала влаги больше, чем на поверхности. Это явление приводит к перемещению влаги из внутренних слоев к поверхностным слоям и называется вла - гопроводностью. Причем это перемещение тем интенсивнее, чем выше температура материала. Отсюда вытекает основное прави­ло сушки: необходимо в начале сушильного процесса поддер­живать максимально допустимую температуру материала, при которой не наблюдается ухудшения пищевых, технологических, семенных и других достоинств семян подсолнечника.

Но влага перемещается не только благодаря градиенту вла­госодержания, она перемещается и благодаря градиенту темпера­тур (термовлагопроводности), т. е. влага перемещается от мало­нагретого участка к более нагретому, или, иными словами, влага перемещается по направлению потока тепла.

Применение того или иного способа сушки может способство­вать в одном случае совпадению направления перемещения влаги как в результате влагопроводности, так и термовлагопроводности, а в другом случае процесс испарения влаги в результате влагопро­водности тормозит процесс испарения влаги в результате термо­влагопроводности. В первом случае процесс испарения влаги будет протекать значительно интенсивнее, чем во втором. Для того чтобы эти процессы испарения влаги совпадали по направлению, необходимо, чтобы температура поверхности семянки подсолнеч­ника была ниже температуры внутри ядра. Сушка будет зна­чительно тормозиться, когда температура поверхности семянки выше температуры внутри ядра.

При сушке семян подсолнечника в шахтных прямоточных сушилках явление термовлагопроводности препятствует переме­щению влаги изнутри к поверхности и интенсивность потока влаги равна разности между интенсивностью потока влаги в результате влагопроводности и интенсивностью потока влаги в результате термовлагопроводности. При рециркуляционной сушке влага испаряется как под воздействием процесса влаго­проводности, так и под воздействием термовлагопроводности.

Температура материала в процессе сушки не, равна темпера­туре агента сушки. В первом периоде сушки температура ма­териала равна температуре смоченного термометра, поэтому можно применять высокие температуры агента сушки. Например, при температуре воздуха 200° С и влагосодержании его 0,008 кг/ кг температура смоченного термометра, а следовательно, и темпе­ратура материала равна 47° С. При повышении температуры воздуха до 350° С при данном влагосодержании температура смоченного термометра увеличивается до 60° С.

При кратковременном нагреве материала температуру агента сушки можно значительно повысить. Пределом является темпе­ратура, при которой температура испарения (температура смо­ченного термометра) будет равна или близка к допустимой тем­пературе нагрева материала.

При высокой температуре агента сушки прогрев семян до допустимых температур и испарение влаги с поверхности проис­ходят в течение нескольких секунд. Дальнейший подвод тепла нецелесообразен. Таким образом, для максимального использо­вания тепла и сохранения качества семян рекомендуется при­менять максимально возможные температуры агента сушки при небольшой продолжительности нагрева.

 

Сушка и хранение семян подсолнечника

Зерносушилка шахтная: особенности использования и преимущества

Зерносушилка – один из видов оборудования, который используется в процессе подготовки зерновых культур. Это оборудование, которое необходимо для нормальной работы многих компаний, занятых в компаниях по переработке зерна, производству муки …

Производство барабанных сушилок для пуха и пера

Производим и продаем барабанные сушилки для пуха и пера, видео ниже: В любое время(круглосуточно) барабанная сушилка работает в г.Александрия, Кировоградской обл. и можно демонстрировать потенциальным потребителям. Характеристики барабанной сушилки: Мощность …

ТЕХ ЦИКЛ БЕЗОПАСНОСТИ И ПРОТИВОПОЖАРНЫЕ МЕРОПРИЯТИЯ ПРИ СУШКЕ СЕМЯН ПОДСОЛНЕЧНИКА

Эксплуатация зерносушилок требует выполнения определен­ных правил техники безопасности и противопожарных мероприя­тий. Персонал, обслуживающий зерносушилку, обязан знать и выполнять существующие правила техники безопасности при эксплуатации машин и механизмов, входящих в комплекс …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.