Строительные материалы и изделия

Теплофизические свойства материалов

Теплофизические свойства материалов необходимы при про­ектировании ограждающих конструкций зданий и сооружений и определяют выбор материалов для них. Проблему термонапряжен­ного состояния конструкций также невозможно решить без зна­ния этих свойств.

Теплоемкость. Если сообщить телу количество теплоты Q, то тем­пература его повысится на At градусов. Отношение С = Q/At назы­вается теплоемкостью системы. Характеристикой материала явля­ется удельная теплоемкость с, представляющая собой количество теплоты (Дж), которое нужно сообщить телу массой 1 кг, чтобы его температура поднялась на 1 К: с - С/т, где т — масса тела.

Подпись: с{т + с2т2 +... + спт„ т, + т2 +... + т„ Подпись: П Теплофизические свойства материалов

Приближенный результат для многофазных систем можно по­лучить по правилу аддитивности, если для каждой из п фаз извест­ны удельная теплоемкость с, и масса т,:

Теплопроводность. Теплопроводность — это способность тела передавать теплоту внутри себя от горячих частей к холодным.

Если нагревать на огне один конец металлического стержня, то очень скоро можно почувствовать, что и другой его конец ста­новится горячим. Это происходит потому, что атомы на горячем конце, увеличив частоту и амплитуду своих колебаний, воздей­ствуют на соседние, менее нагретые атомы, заставляя их коле­баться сильнее. Те, в свою очередь, передают энергию колебаний дальше — так теплота распространяется от горячего конца стерж­ня к холодному. Теплота во всех твердых телах передается колеба­ниями решетки (атомных ядер). В металлах в переносе теплоты участвуют также электроны проводимости, причем их вклад в теп­лопроводность на два порядка выше, чем решетки. Поэтому теп­лопроводность металлов очень высокая.

В основе классической теории теплопроводности лежит закон Фурье, который для плоскопараллельной однородной стенки (рис. 2.2) с температурой, изменяющейся только по толщине стенки 8 и не зависящей от времени т, имеет вид

Q = XU] h)Sx, (2.1)

8

где Q — количество теплоты, прошедшее через стенку толщиной 8, площадью S за время т при разности температур на поверхностях стены 0 = (/, -12); А — коэффициент пропорциональности, называ­емый коэффициентом внутренней теплопроводности, Вт/(м-°С).

Из уравнения (2.1) следует, что коэффициент А = Q8/(OSx) — это количество теплоты, проходящей через однородную стенку толщиной 1 м, площадью 1 м2 за время 1 с при разности темпера­тур на поверхностях стены 1 К.

Закон Фурье не учитывает зависимость А от температуры. Для плохо проводящих материалов при температуре t = -100...800°С эта зависимость может быть описана уравнением X, = А0(1 + Р0, где А„ Х0 —

нию Xt = Ao(l + 0,0032/), где XQ = 0,0238 Вт/(м - °С). Другие факто­ры, влияющие на X, относятся к особенностям материала, поэто­му X является характеристикой его теплоизоляционных свойств. Чем ниже X, тем лучше теплоизоляционные свойства материала. Эти свойства зависят главным образом от его пористости и влаж­ности.

При заполнении объема материала порами (воздухом) его теп­лопроводность резко снижается, так как X неподвижного воздуха очень мал. Конвекция (перемещение) воздуха в порах повышает теплопроводность. Для уменьшения конвекции размеры пор дол­жны быть как можно меньше. Лучшими теплоизоляционными материалами являются материалы с высокой (близкой к 100%) пористостью и очень малыми изолированными друг от друга по­рами. Теплопроводность таких материалов приближается к тепло­проводности воздуха.

Плотность связана с истинной пористостью линейной зависи­мостью у0 = р(1 - П„/100), поэтому служит косвенной характери­стикой теплопроводности. Чем меньше у0, тем меньше X и тем лучше теплоизоляционные свойства, но ниже прочность матери­ала.

Влага, попавшая в поры, сильно повышает теплопроводность материалов. Коэффициент X сухого воздуха (без конвективного теплообмена) составляет 0,024, а для воды X = 0,8 Вт/(м - °С), что

Таблица 2.2

Материал

Теплофизические характеристики

Коэффициент теплопроводности X, Вт/(м • °С)

Удельная теплоемкость с, кДж/(кг • °С)

КЛТР, 10-ус

Гранит

2,9

0,84

1,0...1,5

Бетон (тяжелый)

1,4

1,05

1,0... 1,4

Кирпич (кладка)

0,8

0,80

Сосна(поперек волокон)

0,17

2,7

0,4...0,7

Пенополистирол

0,045

1,7

6...9

Воздух (непод­вижный)

0,024

Вода

0,58

4,18

Лед

2,3

2,1

Сталь

58

0,46

1,1...1,2

Медь

401

в 25 раз больше. При замене воздуха в порах материала водой теп­лопроводность растет почти линейно с увеличением объемной влажности WQ:

Xw = X + 51V0,

где X — теплопроводность сухого материала; 8 — угловой коэффи­циент, определяемый экспериментально (обычно 8 находится в пределах 0,002...0,004).

В случае замерзания воды в порах теплопроводность увеличится почти в 4 раза, так как X льда составляет 2,32 Вт/(м • °С). Следова­тельно, необходимо защищать теплоизоляционные материалы от увлажнения.

Отношение толщины слоя материала 8 к коэффициенту тепло­проводности X называется сопротивлением теплопередаче: R-b/X.

Тепловое расширение материалов. Тепловое расширение мате­риалов характеризуется коэффициентом линейного температурно­го расширения (КЛТР), который показывает, на какую долю уве­личивается длина изделия при нагревании на 1 °С. Значения КЛТР и других теплофизических характеристик для некоторых материа­лов приведены в табл. 2.2.

Строительные материалы и изделия

ЛАКОКРАСОЧНЫЕ МАТЕРИАЛЫ

Лакокрасочные материалы (ЛКМ) используются для получе­ния защитных и декоративных покрытий на изделиях. ЛКМ после нанесения на поверхность отвердевают, образуя непроницаемую пленку, которая прочно сцепляется с основанием. Толщина плен­ки может составлять …

Геосинтетические материалы

Геосинтетические материалы — это материалы на основе по­лимерных волокон, проволоки, пленки, тканей, сеток, сотовых каркасов и т. д. Их применяют в гидротехническом строительстве; при строи­тельстве дорог и аэродромов; сооружении хвостохранилищ, …

Полимербетоны и бетонополимеры

Полимербетон отличается от других видов бетона тем, что свя­зующим веществом в нем являются термореактивные смолы (по­лиэфирные, фенольные, фурановые, карбамидные, реже — по­лиуретановые и эпоксидные). Термопластичные полимеры также могут быть использованы, …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.