разное

Системы регенерации тепла

В мире существует достаточно много работ, направленных на оптимизацию систем регенерации тепла. Все работы в этом направлении объединены общим названием «Heat exchangers network (HEN)» и представляют термодинамический и термоэкономический, а также теплотехнический анализ и синтез систем регенерации тепла.

Случай создания системы РТО между различными энерго- преобразуюіцими системами, где одной или несколькими из них являются холодильные машины, встречается очень редко. В качестве примера можно назвать сложную систему регенеративного тепло­обмена между холодильной машиной и энергетической установкой, используемую в пределах одного транспортного средства (самолет, пароход, автомобиль). Случаи создания систем РТО широко распространены для предприятий, использующих искусственный холод, например, при производстве пива и безалкогольных напитков, на молочных заводах, хлебокомбинатах, а также во многих химико - технологических процессах, например, при производстве искусствен­ного каучука. Известны системы РТО между несколькими криоген­ными установками в пределах одного предприятия. Применение систем РТО с участием тепловых насосов и, особенно, теплофика­ционных машин, имеет большие перспективы.

В 1971 году Э. Гохманн (США) впервые представил идею создания системы регенерации тепла, как отдельной энергетической системы (рис.9.176). С начала 1980-ых годов Б. Линнхофф (Велико­британия) развивает эту идею и вводит понятие «ріпсЬ»-метода как концепции оптимального синтеза системы РТО[34]. Оставляя идею мето-

Системы регенерации тепла

Системы регенерации тепла

100 200 300 б)

Рис.9.19. Процедура графических построений «ріпсЬ»-анализа: а) анализ горячих и холодных потоков в координатах T-Q; б) определения «pinch»-точки

Да, но, используя термоэкономический критерий как функцию оптимизации, с 1990-ых годов Д. Сама и позже Э. Шиубба (Италия) работают над совершенствованием «ріпсЬ»-метода.

Рассмотрим основы «ріпсІі»-метода (рис.9.19). По исходным данным, к которым относят количество холодных и горячих потоков, а также соответствующие каждому потоку входящие, выходящие температуры и термодинамические свойства, изображают характе­ристики каждого потока в координатах T-Q (рис.9.19а). Далее суммируют температурно-тепловые характеристики всех горячих и всех холодных потоков. В результате этой части анализа инженер - проектировщик обладает двумя ломаными линиями, представляю­щими обобщенную линию (icomposite curve) горячих потоков и обобщенную линию холодных потоков. Далее, линии сближают друг с другом на минимальное расстояние, соответствующее потенциаль­ному РТО с ATmin, которое и будет соответствовать так называемым «pinch»-T04KaM для холодной и горячей обобщенных линий. Процедура «сближения линий» отражает процесс оптимизации. Разные варианты «сближения» будут описывать разные варианты конфигурации системы РТО и соответствовать разным значениям функции оптимизации.

Тепло, которое не может быть отведено посредством регене­ративного теплообмена, должно быть отведено внешней охлаж­дающей средой; тепло, которое не может быть получено посредством регенеративного теплообмена, должно быть подведено от внешнего источника тепла.

При рассмотрении системы РТО в виде отдельной контрольной поверхности (рис.9.176) создание обобщенной (гипо­тетической) схемы всех возможных вариантов осуществимо только при малом числе потоков. Например, для случая создания системы РТО между 2 холодными и 2 горячими потоками, число РТО будет равно 24. В этом случае прямой перебор вариантов осуществить возможно, но возникает вопрос: «Сколько будут стоить такие исследования?». Если увеличить число потоков для синтеза системы РТО до 5 холодных и 5 горячих, то обобщенная схема уже составит 1,55х1025 вариантов соединений потоков, т. е. числа РТО. Очевидно, что осуществить прямой перебор такого числа вариантов уже нереально и необходимо каким-либо образом процесс синтеза системы РТО сделать направленным, подчиняющимся определенным принципам и законам. Одним из методов направленного поиска является создание и использование экспертных систем.

Существуют принципы и правила формирования экспертных систем. Экспертная система считается созданной, если сформули­рован набор эвристических правил, на основании которых можно принять решение (при синтезе или анализе системы) и сделать выводы. Сбор необходимого количества теоретической и практи­ческой информации, которой было бы достаточно для формирования экспертной системы - трудоемкая и тяжелая задача, так как информация находится в разрозненном виде, постоянно обновляется и подразумевает систематический обзор литературы и критический ее анализ специалистом высокого уровня знаний в определенном направлении техники.

Первая экспертная система для оптимального синтеза сис­темы РТО была создана под руководством Э. Шиуббы в 1999 году и явилась предпосылкой широкому внедрению автоматизированного проектирования (синтеза и оптимизации) в «pinch»-анализ.

В основу экспертной системы положены «13 руководящих принципов проектирования на основе Второго закона термоди­намики». Для использования в экспертной системе некоторые прин­ципы получили категорические формулировки:

Правило 1. Число регенеративных теплообменников как самостоятельных элементов в системе РТО должно быть близко к числу Гохманна NHen, определяемому как

XHEN =NC+NH+ Nad_c + Nad_h -1, (9.28)

Где Nhen - число холодных потоков; NH - число горячих потоков; Nc - число холодных потоков; NAd-c - число внешних источников для охлаждения (традиционно принимают NAd-c - 1, имея в виду охлаж­дение с помощью окружающей среды); NAD, H - число внешних источ­ников для нагрева.

Правило //. Тепловой поток от холодного потока к горячему запрещен.

По своей сути Правило II является одной из формулировок Второго закона термодинамики. Оно встречалось в виде Совета 1 и Совета 6 в «Советах проектировщику» (п.2.4), а также в виде Принципа 13 из «Руководящих принципов...».

Правило III. Нагрев предварительно охлажденного потока запрещен.

Правило IV. Охлаждение предварительно нагретого потока запрещено.

Правило V. Охлаждение горячих потоков до «ріпсЬ»-точки посредством внешней охлаждающей среды запрещено.

Правило VI. Нагрев холодных потоков ниже «ріпсЬ»-токи посредством внешнего греющего источника запрещен.

Правила V и VI описывают рациональное использование внешних горячих и холодных потоков.

Правило VII. Конфигурации систем РТО, в которых встре­чаются РТО с температурной разностью большей максимально допустимых значений, исключаются из дальнейшего рассмотрения.

Правило VIII. Конфигурации систем РТО, в которых встречаются РТО с температурной разностью меньше минимально допустимых значений, исключаются из дальнейшего рассмотрения.

Эти два правила подразумевают, что на этапе проектирования инженер-проектировщик должен определиться с выбором типа теп­лообменной поверхности регенеративного теплообменника (рис.9.3), соответственно для этой конструкции будут известны ЛТтіп и АТтах.

Правило IX. Для формирования соединения потоков в РТО всегда необходимо соединять тот горячий и тот холодный потоки, для которых температура входа горячего потока в РТО максимально приближена к температуре выхода холодного потока.

Это правило относится к формированию подсистемы РТО выше «ріпсЬ»-точки.

Правило X. Для формирования соединения потоков в РТО всегда необходимо соединять тот холодный и тот горячий потоки, для которых температуры выхода холодного потока из РТО максимально приближена к температуре входа горячего потока.

Это правило относится к формированию подсистемы РТО ниже «pinch »-точки.

Правило XI. Смешение потоков запрещено.

Правило XII. Не отказываться от использования внешних источников тепла и охлаждения.

Правило XIII. Отказываться от соединения потоков, имеющих большую разницу между величинами полных теплоемкостей.

Правило XIV. Минимизировать использование промежуточ­ных теплоносителей при осуществлении теплообмена между двумя потоками.

Правило XV. Экономическая эффективность работы тепло- обменного аппарата обратно пропорциональна термодинамической.

Правило XVI. Минимизировать случаи дросселирования рабочего вещества перед РТО.

Правило XVII. Степень необратимости процесса в РТО является функцией величины массового расхода рабочего вещества каждого потока.

Правило XVIII. При проведении проектной оптимизации необ­ходимо использовать упрощенный эксергетический метод.

Правило XIX. В практической работе инженер-проектировщик должен использовать только те методы, основанные на Втором законе термодинамики, которые являются актуальными при решении конкретной задачи.

Теперь, в качестве примера рассмотрим систему РТО, состоящую из 2 холодных и 2 горячих потоков (таблица 9.4 и рис.9.19а).

На основании правила I NHen=5, так как предполагается использовать один внешний нагревающий и один внешний ох­лаждающий источник. Обобщенная линия горячих потоков состоит из трех фрагментов: в диапазоне температур 450...400К она соот­ветствует только потоку Н4, в диапазоне 400...350К обоим горячим потокам, в диапазоне 350...310К - только потоку HI. Аналогично обобщенная линия холодных потоков также состоит из трех фрагментов: в диапазоне температур 300...330К она соответствует только потоку С2, в диапазоне 330...370К - обоим холодным потокам, в диапазоне 370...390К - только потоку С2. При AT^n-10 град, «pinch»-точка для холодных потоков соответствует 7с, ршсй=ЗЗОК, «ріпс1і»-точка для горячих потоков 77#>/ч>1С/1=340К, следовательно, значение Tpinch=335К будет соответствовать понятию «ріпсЬ»-точки системы РТО.

Тепло, которое необходимо отвести с помощью внешней охлаждающей среды <2с=6кВт; тепло, которое необходимо подвести от внешнего источника тепла (2я=48 кВт; а 322 кВт будут переданы от горячих потоков к холодным исключительно путем регенерации.

Таблица 9.4

Поток

Температура входа, Tfn» К

Температуры выхода,

Touf> К

Тепловая производи­тельность, М с„, кВт/К

Горячий HI

400

310

2,0

Холодный С2

300

390

1,8

Холодный СЗ

330

370

4,0

Горячий Н4

450

350

1,0

310

Оптимальный вариант синтеза системы РТО с точки зрения термоэкономики (при использовании компьютерного моделирования на основании эксперной системы) представлен на рис.9.20.

Многочисленные работы по синтезу и оптимизации систем РТО, в т. ч. «ріпсЬ»-методом показали, что анализ, синтез и оптимизация методами термоэкономики являются наиболее эффек­тивными и жизнеспособными, а разработка и углубление эвристичес­ких правил позволяет существенно ограничить перебор возможных вариантов для выявления высокоэкономичных конфигураций систем

РТО.

разное

Солнечные коллекторы для отопления

Домашние отопительные системы обычно работают за счет энергии электричества, природного газа или масел, за которые необходимо платить. К тому эти способы отопления вредят окружающей среде. Альтернативой им является солнечная батарея или коллектор.

Как раскрутить свой Instagram с помощью сервиса Like Social ?

Популярность социальных сетей сделала возможной организацию бизнеса в Интернете. Чтобы убедиться в том, что интернет-дело может быть прибыльным, достаточно обратить внимание на количество пользователей популярной сети «Инстаграм», которое на сегодняшний …

Лодки надувные

Наш магазин лодки надувные разных размеров, которые мы можем выслать в Хабаровск. Мы на данный момент ищем российских партнёров. Возлагаем надежды, чтоб мы с вами по вебу обсудим о методе сотрудничества.Мы готовы в мае этого года выслать в Хабаровск лодки надувные

Как с нами связаться:

Украина:
г.Александрия
тел. +38 05235 7 41 13 Завод
тел./факс +38 05235  77193 Бухгалтерия
+38 067 561 22 71 — гл. менеджер (продажи всего оборудования)
+38 067 2650755 - продажа всего оборудования
+38 050 457 13 30 — Рашид - продажи всего оборудования
e-mail: msd@inbox.ru
msd@msd.com.ua
Скайп: msd-alexandriya

Схема проезда к производственному офису:
Схема проезда к МСД

Представительство МСД в Киеве: 044 228 67 86
Дистрибьютор в Турции
и странам Закавказья
линий по производству ПСВ,
термоблоков и легких бетонов
ооо "Компания Интер Кор" Тбилиси
+995 32 230 87 83
Теймураз Микадзе
+90 536 322 1424 Турция
info@intercor.co
+995(570) 10 87 83

Оперативная связь

Укажите свой телефон или адрес эл. почты — наш менеджер перезвонит Вам в удобное для Вас время.