Лакокрасочные материалы строительного назначения

Эмульсионная полимеризация

Наиболее важными типами пленкообразователей являются сополимеры, получаемые радикальной сополимеризацией, свойства которых могут быть заданы определенными сочетаниями различных мономеров (а, б-ненасыщенных органических соединений).

Свободно-радикальная полимеризация — цепная реакция, инициированная разложением молекулы инициатора (12) с образованием фрагментов, имеющих реакционноспособный неспаренный электрон (радикал). Образовавшийся радикал (Io) атакует двойную связь молекулы мономера, образуя радикалы растущей цепи (I — М o), которые реагируют со следующими молекулами мономера.

Полимерная цепь растет (I -М — М o  > I — М» — М-)до тех пор, пока не произойдет её обрыв за счет рекомбинации (например, димеризации) или диспропорционирования (передачи цепи на водород). Длину образующейся полимерной цепи можно регулировать введением агентов передачи цепи (R = X), в качестве которых используют соединения, имеющие нестабильную связь: С — Н, С — галоген или S — Н (меркаптаны), прекращающую рост цепи путем передачи на атом водорода или галогена. Оставшийся радикал агента передачи цепи R o начинает новую цепь. Целью введения агента передачи цепи является снижение степени полимеризации.

Свободно-радикальная полимеризация — экзотермическая реакция, протекающая с высокой скоростью. Механизм реакции можно описать следующей схемой:

Распад инициатора: I2 > 21 o
Начало цепи: I+М > IМ o
Рост цепи: IM o +М > I-М-М o; I-М»-М o +М > I — М («_1)-М o
Реакции обрыва цепи:
Рекомбинация I-Мп-М o +I-Мш-М o  > I -М (п+т+2)-1
Диспропорционирование
I-М»-СН2-СНХ o +I-Mm-CH2-CHX o  > I — М»-СН= =СНХ+I-Мш-СН2-СН2Х
Передача цепи: I-Мт-М o +R-Х > I-Мт-MX+R o
Мономеры, наиболее часто используемые для получения дисперсий сополимеров, применяемых в ВД-ЛКМ, приведены в табл. 2.

Таблица 2

Мономеры, наиболее часто используемые для получения дисперсий сополимеров
Производные кислот Другие
акриловой метакриловой
н-Бутилакрилат Метилметакрилат Стирол
2-Этилгексилакрилат Стирол Винилацетат
Этилакрилат н-Бутилметакрилат Акрилонитрил
Акриловая кислота Метакриловая кислота Винилхлорид
Акриламид Метакриламид Винилэтилен

Промышленное получение водных дисперсий сополимеров осуществляется методом эмульсионной полимеризации, являющейся одним из видов свободно-радикальной полимеризации.

При проведении эмульсионной полимеризации взаимодействие мономеров протекает в воде в присутствии ПАВ (эмульгаторов) или полимеров (защитных коллоидов) при добавлении водорастворимого инициатора и нагревании.

Эмульгированные мономеры полимеризуются и образуют дисперсию макромолекул (рис. 1).

Рис. 1. Схема протекания эмульсионной полимеризации

Согласно мицеллярному механизму реакции, предложенному Harkins, Smith и Ewart, мономеры, находясь в реакторе, до введения инициатора распределяются между каплями эмульгированного мономера (диаметром 1–10 мкм) и мицелламиагрегатами из 20–100 эмульгированных молекул диаметром 5–15 нм. Количество мономера, растворенного в воде, очень мало. При нагревании инициатор в водной фазе распадается с образованием радикалов, инициирующих рост цепи при взаимодействии с растворенным в воде мономером. При этом образуются олигомерные радикалы. Так как количество мицелл в реакторе на единицу объема (=1018/см³) значительно выше, чем капель мономера (=1010/см³), и общая площадь их поверхности также значительно превышает суммарную площадь капель мономера, олигомерные радикалы проникают, как правило, внутрь мицелл, в результате чего содержание мономера в мицеллах должно значительно снижаться. Однако этого не происходит благодаря поступлению молекул мономера из мономерных капель через водную фазу в мицеллы: концентрация мономера в водной фазе остается постоянной до тех пор, пока в реакторе присутствуют капли мономеров.

Помимо теории мицеллярного образования частиц, Fitch и Tsai предложили принцип «гомогенной кристаллизации», в дальнейшем развитый Ugelstad и Hansen, согласно которому инициирование водорастворимым заряженным пероксидным радикалом, добавляемым к мономеру в водной фазе, является затравкой для роста олигомерных макрорадикалов. При достижении длины цепи критического значения (2–100 единиц), определенного для каждого типа мономера, предел растворимости превышается и образуются первичные частицы, обычно нестабильные и подверженные агломерации до достижения состояния коллоидной стабильности с образованием вторичных частиц. Диаметр вторичных частиц ограничивается количеством эмульгатора и полярностью образующегося полимера.

Из описания механизма реакции эмульсионной полимеризации следует, что необходимым условием для её проведения является по крайней мере слабая растворимость полимера в воде. В частности, такие мономеры, как стирол или 2-этилгексилакрилат, достаточно легко подвергаются эмульсионной полимеризации. Дисперсии полимеров очень гидрофобных, длинноцепных и нерастворимых в воде мономеров, таких как лаурилметакрилат или стеарилакрилат, нельзя получить традиционной эмульсионной полимеризацией.

Для синтеза полимерных дисперсий в промышленном масштабе мономеры предварительно эмульгируют в воде. Эмульсия мономера и раствор инициатора по отдельным линиям поступают в реактор. Такой полунепрерывный способ проведения эмульсионной полимеризации позволяет получать очень высокую конверсию (до 90%), несмотря на разную реакционную способность и параметры сополимеризации мономеров.

Преимуществом полунепрерывного процесса является возможность контролировать выделение тепла в ходе реакции внешним охлаждением.

В отличие от полимеризации в растворе в результате эмульсионной полимеризации получают макромолекулы полимера, содержащиеся внутри латексных частиц, равномерно распределенных в водной фазе. Таким образом, молекулярная масса полимера не влияет на вязкость получаемых продуктов, что позволяет применять в качестве пленкообразователей для ЛКМ высокомолекулярные полимеры (с молекулярной массой более 106), которые невозможно использовать в виде растворов из-за их очень высокой вязкости.

Промышленные дисперсии, как правило, имеют достаточно высокое содержание полимеров [40–60% (по массе)].

Комментарии:

  1. Пердирий Жопьевич 15.10.2016 15:43

    Хуй, пизда, сковорода

Добавить комментарий

Лакокрасочные материалы строительного назначения

Термоизоляционное покрытие

Термоизоляционное покрытие «Акварелла ТМ-150» Сверхтонкое теплоизоляционное покрытие «Акварелла ТМ-150» ТУ 5768-001-99799327-2010 для нанесения на минеральные и металлические поверхности. Состав жидкой теплоизоляции «Акварелла ТМ-150»: вакуумированные алюмосиликатные микросферы, термостойкая стирол-акрилатная дисперсия, ингибиторы …

Рецепты светящихся красок

Явление фосфоресценции можно хорошо наблюдать на сульфидах щелочноземельных металлов. Оно заключается в том, что некоторые вещества, будучи предварительно подвергнуты освещению, продолжают затем некоторое время светиться в темноте. Сущность явления состоит …

Олифа и краски, Сургучи, лаки

Приготовление олифы. Так как варка олифы требует специального котла и опасна в пожарном отношении, приводим способ приготовления олифы без варки. На 20 весовых частей льняного масла берется 1 часть глета …

Как с нами связаться:

Украина:
г.Александрия
тел. +38 05235 7 41 13 Завод
тел./факс +38 05235  77193 Бухгалтерия
+38 067 561 22 71 — гл. менеджер (продажи всего оборудования)
+38 067 2650755 - продажа всего оборудования
+38 050 457 13 30 — Рашид - продажи всего оборудования
e-mail: msd@inbox.ru
msd@msd.com.ua
Скайп: msd-alexandriya

Схема проезда к производственному офису:
Схема проезда к МСД

Представительство МСД в Киеве: 044 228 67 86
Дистрибьютор в Турции
и странам Закавказья
линий по производству ПСВ,
термоблоков и легких бетонов
ооо "Компания Интер Кор" Тбилиси
+995 32 230 87 83
Теймураз Микадзе
+90 536 322 1424 Турция
info@intercor.co
+995(570) 10 87 83

Оперативная связь

Укажите свой телефон или адрес эл. почты — наш менеджер перезвонит Вам в удобное для Вас время.