КОТЕЛЬНЫЕ УСТАНОВКИ И ПАРОГЕНЕРАТОРЫ

Сокращение вредных выбросов в окружающую среду Режимными методами

Принципиально существует несколько разных подходов к решению за­дачи уменьшения выбросов вредных веществ с дымовыми газами в атмо­сферу. Их можно разделить на следующие три группы:

— удаление вредных компонентов из топлива путем комплексной его пе­реработки перед сжиганием в котле;

— непосредственное воздействие на механизм образования вредных ве­ществ в процессе сжигания исходного натурального топлива в топоч­ной камере;

— очистка продуктов сгорания топлива (уходящих дымовых газов) от при­сутствующих в них вредных соединений.

Наибольший эффект, конечно, может дать комплексное применение разных методов, но при этом надо учитывать, что все они требуют значи­тельных дополнительных затрат и тем больших, чем глубже очистка с при­менением сочетания разных методов.

К числу вредных выбросов электростанций, которые возможно умень­шить правильной организацией режима сжигания топлива, относятся глав­ным образом оксиды азота, полициклические углеводороды (в том числе бензапирены) и триоксид серы SO3.

Сокращение вредных выбросов в окружающую среду Режимными методами

Рис. 7.26. Зоны образования оксидов азота при сжигании топлив: 1 — термические оксиды; 2 — топливные оксиды; 3 — быстрые оксиды.

Наибольшую зону загрязнения воздушного бассейна от выбросов ТЭС составляют оксиды азота, которые по характеру образования разделяются на топливные, быстрые и термические (рис. 7.26).

(7.29)

Образование топливных NOTJI и быстрых NO5 оксидов азота проис­ходит на начальной стадии горения. Топливные NOTJI образуются за счет азота топлива, NP, в результате его преобразования при нагреве в активные Радикалы NH3, HCN в процессе выхода летучих веществ в области темпе­ратур 600-1 120°С и при локальных избытках воздуха алок > 1 происходят Реакции:

NH3 + 02 -> NO + Н20 HCN + 02 ОН + СО + N0.

Быстрые NO6 образуются за счет разложения углеводородных соединений топлива, в результате чего в корневой части факела накапливаются ради­калы CN, HCN и при наличии некоторого количества кислорода также происходит образование N0. Максимальное значение N0 имеет место при алок = 0,7-0,8 и в области температур 930-1 250°С.

Наиболее массовый выход NOx имеет место в области ядра факела при температурах Тф > 1800°К 1 530°С) за счет прямого окисления азота воздуха атомарным кислородом:

N2 + О" N0 - 316,9 кДж/моль. (7.30)

Этот путь образования NOx называют термическим.

Основными способами подавления образования оксидов азота в топках котлов являются следующие:

1. Уменьшение избытка воздуха в зоне горения до минимального по условиям полного сгорания топлива.

2. Применение ступенчатого сжигания топлива, при котором в одну группу горелок (в нижний ярус или в горелки одной стены топки) подается основная масса топлива при избытке воздуха меньше единицы, а в дру­гую группу (верхний ярус горелок или противоположную группу горелок) поступает остаток топлива и воздуха со значением а > 1.

3.4 Рециркуляция дымовых газов с температурой 350-400°С в топку, что обеспечивает снижение температурного уровня в зоне горения и кон­центрации горючих веществ и окислителя за счет разведения горючей смеси инертными газами.

4. Ввод в зоны активного образования оксидов азота струи пара или воды для локального снижения уровня температуры и создания химических реакций, препятствующих образованию вредных соединений.

5. Создание горелок двухступенчатого сжигания с созданием времен­ного недостатка воздуха в зоне образования быстрых и топливных оксидов азота.

Характерная зависимость образования оксидов азота от избытка возду­ха в зоне горения при сжигании природного газа показана на рис. 7.27. При­ближение избытка воздуха к единице и менее обеспечивает низкий уровень выхода NOx, но при этом в разных зонах топки возникает недожог топлива и, что особенно опасно, резко растет концентрация бенз(а)пирена. Переход на значительный избыток воздуха также ведет к снижению выхода NOx за счет снижения температурного уровня реакций, но эксплуатация котлов с такими высокими избытками воздуха не экономична.

Более эффективным способом снижения выхода NOx является ступен­чатое сжигание. На рис. 7.28 показан пример снижения выхода NOx при сжигании природного газа и переходе с одноступенчатого на двухступен­чатое сжигание, используя двухъярусное расположение горелок. В первой

Сокращение вредных выбросов в окружающую среду Режимными методами

Рис. 7.27. Зависимость образования оксидов азота от избытка воздуха в зоне горения ври сжигании природного газа.

Ступени сжигания обеспечивают избыток воздуха а = 0, 75-0,85, при этом не происходит полного сгорания топлива. Кроме снижения уровня темпера­туры в зоне горения, здесь создаются условия для восстановления оксидов азота при их контакте с раскаленным углеродом или промежуточными про­дуктами при нехватке кислорода:

2NO + С 2СО + N2, 2NO + 2СО -> 2С02 + N2, (7.31)

2NO + СН2 СО + Н20 + N2.

В результате выход NOx в первой зоне резко сокращается. Во второй зоне при избытке воздуха больше единицы температура газов уже не достигает Уровня активного образования термических оксидов.

Организация рециркуляции газов в топку показана на рис. 7.29. Вли­яние рециркуляции наиболее значительно при вводе продуктов сгорания в воздуховоды перед горелками, когда они в смеси с горячим воздухом поступают в топку (рис. 7.29,5).

Надо отметить, что наибольший эффект снижения концентрации NOx в продуктах сгорания достигается при доле рециркуляции грц - 0, 2-0, 3 (^0-30%). Дальнейшее увеличение грц при сжигании газа и мазута ведет

Сокращение вредных выбросов в окружающую среду Режимными методами

Рис. 7.28. Изменение концентрации оксидов азота на выходе из зоны активного го­рения при одно - и двухступенчатом сжигании природного газа: 1 — одноступенчатое сжигание при агор = а = 1,05; 2 — двухступенчатое сжигание с разным избытком воздуха в подзонах горения.

К затягиванию горения и появлению недожога топлива. К тому же мак­симальное подавление образования NOx требуется при номинальной или близкой к ней нагрузке, когда ввод заметного количества газов рециркуля­ции сильно увеличивает скорость газов и аэродинамическое сопротивление газового тракта.

Частичный эффект снижения образования NOx создают горелки двухступенчатого сжигания (ГДС). Принцип их работы основан на том (рис. 7.30), что вторичный поток воздуха участвует в дожигании топлива на более поздней стадии. Таким образом, прогрев топлива, выход летучих и разложение сложных углеводородных соединений топлива происходит в зоне с а < 1. Это обеспечивает снижение образования топливных и бы­стрых NOx в начальной части факела и понижение максимальной темпера­туры горения.

Наиболее глубокое подавление образования оксидов азота возможно при сочетании разных способов. Так, например, организация ступенчатого

Сокращение вредных выбросов в окружающую среду Режимными методами

Рис. 7.29. Влияние степени рециркуляции газов на выход оксидов азота а — общая схема рециркуляции газов: б — относительное изменение концентрации NOx от доли рециркуляции газов; 1 — без рециркуляции; 2 — ввод рециркуляции через сопла боковых стен; 3 — то же под работающие горелки; 4 — то же непосредственно в горелки (внутренний канал для газов рециркуляции).

Сжигания в топке может сопровождаться частичной рециркуляцией газов. При сжигании газа и мазута удачным является сочетание впрыска воды с рециркуляцией газов, причем при высокой нагрузке котла целесообразно использование впрыска воды в зону горения (0,5-0,6% от расхода перегре­того пара), а при более низкой нагрузке — усиление рециркуляции газов. Конструктивно обеспечение впрыска воды значительно дешевле, чем ре - Циркуляция газов, но при этом способе ниже КПД котла за счет увеличения потерь с уходящими газами (рост объема водяных паров в газах).

КОТЕЛЬНЫЕ УСТАНОВКИ И ПАРОГЕНЕРАТОРЫ

Требования к котельной (топочной) на твердом топливе: основные нюансы от специалистов компании Статус 24

Проектирование и сборка составляющих для системы обогрева должна быть четко согласовано со строительными стандартами к отопительным помещениям.

ТТ котлы, электричество и тепловой насос, как альтернатива газу.

Тарифы на центральное отопление постоянно растут, оплата этой коммунальной услуги отнимает большую часть платежей семьи. Отличным выходом может стать выбор альтернативного источника тепловой энергии, который должен стать энергосберегающим, недорогим и …

Подбор мощности твердотопливного котла.

Наиболее важным параметром, от которого зависит удобство и комфорт использования котла, является его мощность. Неправильно подобранная мощность грозит Вам целым рядом проблем и неудобств. Самой распространенной ошибкой является недостаточная мощность

Как с нами связаться:

Украина:
г.Александрия
тел. +38 05235 7 41 13 Завод
тел./факс +38 05235  77193 Бухгалтерия
+38 067 561 22 71 — гл. менеджер (продажи всего оборудования)
+38 067 2650755 - продажа всего оборудования
+38 050 457 13 30 — Рашид - продажи всего оборудования
e-mail: msd@inbox.ru
msd@msd.com.ua
Скайп: msd-alexandriya

Схема проезда к производственному офису:
Схема проезда к МСД

Представительство МСД в Киеве: 044 228 67 86
Дистрибьютор в Турции
и странам Закавказья
линий по производству ПСВ,
термоблоков и легких бетонов
ооо "Компания Интер Кор" Тбилиси
+995 32 230 87 83
Теймураз Микадзе
+90 536 322 1424 Турция
info@intercor.co
+995(570) 10 87 83

Оперативная связь

Укажите свой телефон или адрес эл. почты — наш менеджер перезвонит Вам в удобное для Вас время.