Физика будущего

Середина века (2030–2070 гг.) Конец закона Мура

Зададимся, однако, вопросом: как долго еще продлится компьютерная революция? Если закон Мура продержится еще лет пятьдесят, то компьютеры, скорее всего, намного превзойдут по возможностям человеческий мозг. Но к середине века возникнет другая динамика. Как сказал Джордж Харрисон, «все проходит». И е действие закона Мура должно прекратиться, а с ним — впечатляющий рост компьютерных мощностей, питавший последние полвека рост мировой экономики.

Сегодня нам кажется естественным — и даже закономерным, — что возможности продуктов компьютерной отрасли растут практически на глазах. Именно поэтому мы каждый год покупаем новые модели, зная, что они почти в два раза мощнее прошлогодних. Но если закон Мура перестанет действовать и каждое следующее поколение компьютеров будет примерно таким же, как предыдущее, то зачем покупать новые компьютеры?

И вообще, процессоры сейчас внедряются в самые разные предметы и приборы, и у многих людей просто не будет необходимости в домашнем компьютере. Последствия для экономики в целом могут быть поистине катастрофическими. Перестанут работать целые отрасли, миллионы людей могут потерять работу, в экономике возникнет неуправляемый хаос.

В прошлом физики не раз указывали на неизбежный конец закона Мура, но промышленники традиционно отмахивались от наших предупреждений и говорили, что ученые, как мальчик из басни, все время кричат «Волк! Волк!». Крах закона Мура так часто предсказывали, говорили они, что мы уже ничему не верим.

Но теперь все иначе.

Два года назад я выступал перед сотрудниками Microsoft в штаб-квартире компании в Сиэтле, штат Вашингтон. Три тысячи лучших инженеров компании, собравшиеся в зале, ждали от меня откровений о будущем компьютеров и телекоммуникаций. В этой огромной аудитории я видел лица молодых инженеров-энтузиастов; именно эти люди создают программы, работающие потом в наших настольных и портативных компьютерах. В отношении закона Мура я сказал прямо: отрасли следует готовиться к этому краху. Лет десять назад мои слова, наверное, были бы встречены смехом и шутками. Но на этот раз я видел перед собой лишь серьезные лица и согласные кивки.

Крах закона Мура — вопрос глобального значения; на кон здесь ставятся триллионы долларов. Но как в точности закончится действие этого закона и что именно его заменит, определят законы природы. Получается, что очень скоро ответы на чисто физические вопросы потрясут основы экономической структуры капитализма.

Чтобы разобраться в этой ситуации, важно осознать, что всеми невероятными свершениями компьютерной революции мы обязаны нескольким физическим принципам. Во-первых, компьютеры считают с такой поразительной быстротой потому, что электрические сигналы движутся по проводам со скоростью, близкой к скорости света — абсолютному пределу для любой скорости во Вселенной. За секунду луч света способен семь раз обогнуть Землю или долететь до Луны. Кроме того, электроны несложно двигать, поскольку они не слишком прочно держатся в атоме (мы легко сдвигаем их с места, расчесывая волосы, проходя по ковру или стирая, — именно так накапливается статическое электричество). Сочетание не слишком прочных связей и молниеносной скорости позволяет нам стремительно посылать по проводам электрические сигналы, что, собственно, и породило электрическую революцию прошлого века.

Во-вторых, количество информации, которую можно передать при помощи лазерного луча, практически ничем не ограничено. Световые волны колеблются во много раз быстрее звуковых и могут нести на себе гораздо больше информации, чем звук. (Представьте, к примеру, длинную натянутую веревку, по которой с одного конца пускают волны. Чем быстрее двигается этот конец, тем больше сигналов умещается на веревке. Поэтому количество информации, которую можно передать при помощи волны, тем больше, чем быстрее она колеблется, т. е. Чем больше ее частота.)

Свет — это волна, у которой на одну секунду приходится примерно 1014 циклов (1014— это единица с четырнадцатью нулями). Для передачи одного бита информации (1 или 0) требуется много циклов. Это значит, что оптическое волокно может нести на одной частоте примерно 1011 бит информации. И это число можно еще увеличить, поместив в одно волокно несколько сигналов на разных частотах, а затем связав оптические волокна в единый кабель. Все это означает, что, увеличивая число каналов в кабеле, а затем и число кабелей, можно передавать информацию в почти неограниченных количествах.

В-третьих — и это самое главное, — основой компьютерной революции является миниатюризация транзисторов. Транзистор — это ключ, или управляющий элемент, контролирующий поток электричества. Если сравнить электрический контур с водопроводом, то транзистор — это кран, управляющий потоком воды. Точно так же как простым поворотом ручки крана можно перекрыть сильный поток воды, небольшой электрический ток на управляющем входе транзистора может управлять гораздо более сильным током основной цепи и таким образом усиливаться.

Сердце этой революции — компьютерный чип, электронная микросхема, где на кремниевой подложке размером с ноготь могут разместиться сотни миллионов транзисторов. Внутри любого современного компьютера есть микросхемы, транзисторы на которых можно разглядеть только в микроскоп. Эти невероятно крошечные транзисторы создаются примерно так же, как рисунки на футболках.

Чтобы напечатать рисунок на тысячах футболок, сначала необходимо создать шаблон с контуром этого рисунка. Затем этот шаблон накладывают на футболку и брызгают сверху краской в виде спрея. Краска попадает на ткань только в тех местах, где на шаблоне имеются прорези. Затем шаблон убирают, и на футболке остается идеальная копия рисунка.

Точно так же при производстве микросхем сначала изготавливается шаблон, содержащий сложные контуры миллионов транзисторов. Шаблон помещается на многослойную светочувствительную кремниевую пластину. Затем на шаблон и пластину направляют ультрафиолетовый луч; излучение проникает сквозь прорези в шаблоне и действует на кремниевую пластину.

После этого подложку опускают в кислоту, вытравливая контуры схем и создавая хитрый рисунок миллионов транзисторов. Поскольку пластина состоит из множества проводящих и полупроводящих слоев, кислота проникает на разную глубину и вытравливает в ней различные формы; таким образом можно создавать невероятно сложные электронные схемы.

Закон Мура так неустанно обеспечивал нам экспоненциальный рост мощности компьютеров, в частности, потому, что производители микросхем, отрабатывая технологию, постепенно уменьшали длину волны УФ-излучения, что позволяло им вытравливать на кремниевых пластинках все более и более крошечные транзисторы. Длину волны УФ-излучения можно довести до 10 нм (нанометр — это одна миллиардная часть метра), и самый маленький транзистор, который можно вытравить на подложке таким способом, будет около тридцати атомов в поперечнике.

Но этот процесс не может продолжаться до бесконечности. В какой-то момент мы столкнемся с тем, что вытравить таким способом транзистор размером с один атом физически невозможно. Можно даже прикинуть, когда приблизительно рухнет закон Мура: в тот момент, когда дальнейшая миниатюризация потребует делать транзисторы размером с отдельный атом.

Около 2020 г. или чуть позже закон Мура постепенно перестанет действовать; если не будет найдена новая технология, способная заменить нынешнюю и обеспечить дальнейший прогресс, Кремниевой долине грозит медленное превращение в очередной «ржавый пояс». Согласно законам природы со временем Кремниевая эра закончится и начнется Посткремниевая. Транзисторы станут такими маленькими, что на сцену выйдут квантовая теория или атомная физика — и электроны начнут уходить с проводников и просачиваться куда не положено.

К примеру, представьте, что толщина тончайшего полупроводникового слоя в вашем компьютере достигнет пяти атомов. Этот момент, по законам природы в дело вступит квантовая теория. Принцип неопределенности Гейзенберга утверждает, что невозможно точно знать одновременно положение и скорость частицы. На первый взгляд такой принцип кажется непонятным, но на атомном уровне просто невозможно определить, где в точности находится электрон, а потому никак нельзя гарантировать, что он не выйдет за пределы ультратонкой проволоки или слоя; он непременно просочится оттуда наружу и вызовет короткое замыкание.

Мы обсудим все это более подробно в главе 4, когда речь пойдет о нанотехнологиях. Пока же предположим, что физики нашли подходящую замену кремнию, но мощность компьютеров в новых условиях растет значительно медленнее, чем раньше. Скорее всего, экспоненциальный рост продолжится, но время удвоения мощности составит не 18 месяцев, а по крайней мере несколько лет.

Физика будущего

Какая роль человеческого фактора в бизнесе будущего

В будущем роль человеческого фактора в бизнесе будет неотъемлемой. Технологии такие как Искусственный Интеллект и машинное обучение будут использоваться для автоматизации и оптимизации процессов в бизнесе. Однако их применение не …

Следующие несколько месяцев

Следующие несколько месяцев полны для вас с Карен чудесных сюрпризов. Вы с ней идете в салон виртуальной реальности и развлекаетесь там, как дети, проживая целую жизнь, глупую и невероятную. Вы …

Свидание

Всю неделю вы думаете о будущем свидании и, откровенно говоря, ждете его с нетерпением. Готовясь к встрече с Карен, вы вновь ощущаете себя школьником — даже удивительно, ведь ничего особенного …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.